
International Journal of Theoretical Physics, Vol. 24, No. 6, 1985 

Nonlinear Diffusion and Nelson-Brown Movement 

Andrzej Trz~sowski I and Romuald Kotowski 1 

Received January 2, 1985 

The nonlinear diffusion process, which can be described as the Nelson-Brown 
motion, is considered. The obtained equation becomes the classical linear 
diffusion equation for small relaxation times, and for long relaxation times it is 
transferred into the Schrrdinger-like equation. The possible nonequilibrium 
stationary states are discussed. 

1. I N T R O D U C T I O N  

The influence of  an external field acting on a point  defect is described 
in the classical formulat ion o f  the diffusion theory by the Stokes relation 

F = ~ b  (1) 

which connects  the force F acting on a point  defect with its mean  velocity 
b. The coefficient 1/ff is called the mobility o f  the defect. The Stokes relation, 
f rom the Newton ian  mechanics  point  o f  view, is an approximat ion  in which 
the inertial effects are neglected. Thus there seems to be a need of  formulat ing 
a theory that  fuses the collective description o f  a toms '  behavior,  manifest ing 
itself in the existence of  the diffusion flux, with the Newtonian  dynamics  
of  a single atom. 

The clue is the Schr~Sdinger equat ion 

iho,~O = - h  2 A t p / 2 m  + UtO (2) 

where h = h/27r  is the reduced Planck constant.  The above equat ion joins 
together the  direct informat ion  about  the dynamics  o f  a material point  in 
R 3 (its mass m, potential  o f  external forces U) with informat ion about  the 
" condensa t i on"  degree o f  subsets o f  R 3 with results o f  space localization 
tests o f  this material  point.  One can imagine these subsets as "c louds"  of  
differential density. 
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The diffusion process also has to do with "clouds," but this time with 
real clouds of  particles taking part in the diffusion. 

On the other hand there exists a method called stochastic quantization, 
used to derive equation (2) by means of  the diffvsion Markov process 
(Nelson, 1966). It is well known that the Markov process can sometimes 
approximate well a movement of  a particle taking part in a diffusion process 
(Girhman and Skorokhod, 1968; Stepunovitch and Ulitzkij, 1978). This 
theoretical situation suggests that equation (2) obtained in such a manner 
describes rather a certain nonlinear diffusion process than quantum 
phenomena (cf. Mielnik and Tengstrand, 1983). In this case there should 
be introduced, instead of the reduced Planck constant h, a certain parameter 
fi which, for real physical processes, should not reach the value of h. The 
parameter fi is given in the form (e.g,, Ghirardi et al., 1978) 

t~ = too-  2 (3 )  

where m is the mass of  an atom and o -2 is the variance parameter of the 
stochastic variable of the Markov diffusion process. 

It is shown in this paper  that the stochastic quantization method allows 
us, in the presence of a special form of an external field, to construct a 
nonlinear equation of  the form (2) but with the constant h instead of h, 

tl = 2Din  (4) 

where D is the diffusion coefficient and 

U ~  V =  V(~, x, t )=  U(x, t )+f iVo(t~) /2"r  (5 )  

where r is a constant having the dimension of time and meaning of a 
relaxation time. The equation obtained, 

ifiO,O = _fi2 Aq~/2m + V~9 (6) 

becomes equivalent to the classical equation of linear diffusion, i.e., it is 
based on the relation (1) for very small relaxation times (~'~ 0) and trans- 
forms into the equation 

ifia,~O = _fi2 A O / 2  m + U $  (7) 

for processes with very long relaxation times (~-~oo). Thus equation (6) 
describes the nonlinear diffusion processes for finite relaxation times. The 
existence of  an equation with such properties brings closer the answer to 
the question at the end of the paper of  Mielnik and Tengstrand (1983): 
"What precisely is the Nelson scheme? Is it only a formal art? Or, perhaps, 
an emerging fragment of  a yet undiscovered theory?." 
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2. DIFFUSION AS STOCHASTIC PROCESS 

It is well known (Flynn, 1972; Christian, 1975) that diffusion can be 
regarded in many cases as a random motion of a particle. Such an approach 
is justified for crystal solid bodies if one considers: 

2.1. Thermally Activated Point Defects (Flynn, 1972) 

Atoms in crystal lattice, excited by thermal energy, vibrate around their 
averaged in time positions. Certain types of the fluctuations can cause the 
displacements of  atoms into interstitial positions where they can find new 
equilibrium positions. These interstitial atoms are called thermally activated 
point defects. Then, with the help of the fluctuations, they can migrate into 
new interstitial positions. However, the mean number  of  atoms moving in 
various directions is equal, so finally we can observe a chaotic movement  
and mixture of  atoms but without any of their macroscopic flux. The 
thermally activated defects exist in equilibrium crystal structure in nonzero 
absolute temperature. 

2.2. Self-Diffusion Phenomenon (Christian, 1975; Smirnov, 1982) 

I f  a chemical element creating a crystalline substance is a mixture of 
isotopes [which occurs to  most elements (Scholz, 1968)] there is still the 
possibility that there exists a nonzero gradient of one of the isotopes 
concentration in the otherwise perfect body. Diffusion forced by the 
described situation is called a self-diffusion (of an isotope). Atom displace- 
ments in the macroscopic self-diffusion process are equivalent to random 
walk. Let us remark that in this case the so-called vacancy mechanism is 
the main mechanism of diffusion, which means that the elementary act of 
diffusion consists in exchanging the atom and vacancy positions: atom 
moves replacing sequentially empty crystal lattice nodes. 

2.3. Chemical Diffusion with Small Concentrations (Christian, 1975; 
Smirnov, 1982) 

The case of  a chemical diffusion (called also mutual diffusion) takes 
place in alloys which are not in an equilibrium state with respect to the 
distribution of different constituents. I f  in an alloy the atoms of one element 
are in the interstitial positions of  another element crystal lattice, then the 
chemical diffusion can be regarded as a random walk. It follows from the 
fact that in such alloys the inserted atoms (so-called extra matter) are much 
smaller than the matrix atoms. Moreover, their concentration is usually 
small too and therefore we can neglect their interactions. In this case 
diffusion has the thermally activated interstitial random walk character and 
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sequential jumps of atoms from one interstitial position into another can 
be regarded as independent random events. 

The diffusion process is described in a macroscale by the function 
n = n(x, t), called a volume concentration of a matter taking part in the 
diffusion ([n] = cm-3). We are not interested in the influence of the boundary 
of a body, so we restrict our discussion to the infinite body identified with 
the R 3 space of positions of diffusing particles. At every instant of time 
t >_ 0 a finite but very large number of particles takes part in a diffusion 
process, i.e., 

Vt->0 N( t )  = f n(x,t) dV(x)<oo (8) 
3 R 3 

We consider the case of identical but distinguishable particles (remaining 
in the frames of the classical mechanics) with negligible interactions only. 
The last approximation is often made, for example for small concentrations 
of  diffusing atoms in crystalline body (see, e.g., Smirnov, 1982). 

We call a discrete N(t)-element  subset of  the space R 3 defined as 
positions of  all diffusing particles at an instant of  time t-> 0 a microstate Or. 

We denote by dp,(x) the probability of  observing at instant t a diffusing 
particle in a neighborhood of a point x with a volume dV(x), and by p(x, t) 
the density of  this probability, i.e., 

dp,(x) =p(x ,  t) dV(x) (9) 

It follows from the assumptions about the absence of interactions and 
identity of particles from a microstate f~, that the microstate can be identified 
with a N(0 -e l emen t  statistical ensemble for a statistical variable x(t)  defined 
as a position of  a certain atom at an instant of  time t-> 0. Consequently, 
the probability dp,(x) can be calculated from the formula (Klimontovitch, 
1982) 

dp, (x)= lim n(x, t) dV(x)/N(t)  (10) 
N ( t ) - ~ o o  

and the approximation is the better the greater N(t) is. From equations (9) 
and (10) follows 

p(x, t) = n(x, t) /N(t)  (11) 

A mathematical model which relatively well describes a random walk 
of a diffusing particle in the presence of an external force field is the so-called 
diffusion Markov process (Girhman and Skorokhod, 1968; Stepunovitch 
and Ulitzkij, 1978). In our paper we constrain ourselves considering the 
diffusion Markov process defined by the stochastic Ito equation of a form 

d x =  b(x, t) dt+ dW(t)  (12) 
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where W = W(t) is a Wiener process in R 3. This means that W is the uniform 
Gaussian process with independent increments for which 

W(0) =0,  E[W(t ) ]=O 

E[W(t)(~W(t)]=0-2tI ,  t->0, tr2>0 (13) 

where E is the expectation value operator and I is a unit matrix. It follows 
that 

Ex(o[ dx( t)] =b(x, t) dt (14) 

Ex(o[( dx( t ) - b ( x  , t) dt)(~(dx( t ) - b ( x ,  t) dt)]= 0 -2 dtI 

where Ex(o is a conditional expectation value operator. Equation (14) means 
that solution x(t), t->0, of the stochastic Ito equation (12) is a random 
process in R 3, stochastically uniform and isotropic. The components xi(t), 
i=  1, 2, 3, for t - 0  in the orthonormal Cartesian coordinate system in R 3 
are incorrelated random variables. 

The probability P(x( t )~ ~) that there exists a trajectory of the Ito 
equation which cuts a set ~ c R 3 at the time instant t and in the position 
x(t) is of the form 

P(x(t) ~ ~ ) =  I p(x, t) dV(x) (15) 

where the probability density fulfils the Fokker-Planck equation (Ghiradi 
et al., 1978): 

O,p = �89 Ap - div(pb) (16) 

According to our assumptions, the probability density p(x, t) is connected 
with the volume concentration n(x, t) of the diffusing particles with the 
help of equation ( 11 ). Thus the condition (8) is equivalent to the probabilistic 
measure normalization condition 

P(x(t) ~ R 3) = 1 (17) 

When the proper assumptions about the function b(x, t) are made, the 
solution of the equation (12), with the initial condition x(0) = xo 6 R 3, exists, 
it is continuous and unique defined with the probability 1 (Nelson, 1967; 
Girhman and Skorokhod, 1968). In many very important cases the solution 
x(t) is not differentiable and we need a substitute for the derivative (Nelson, 
1966). 

Let f = f ( x ,  t) be a smooth vector or scalar function. By D+ and D_ 
we denote the operators of stochastic differentiation along the trajectory 
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x(t), t->0, of  the Ito equation, which are by definition 

D+f(x(t), t )= lim Ex~,)[{f(x(t+h), t+h)-f(x(t),  t)}/h] 
h~O+ 

D_f(x(t), t )= lim Ex~,)[{f(x(t), t ) - f (x ( t -h) ,  t-h)}/h] 
h ~ O _  

Thus 

where we denote 

D+ = 3, +b(x,  t)" V + (o-2/2)A 

D_=cg, +b,(x, t) " V -  (tr2/2)A 

(18) 

(19) 

and 

2VP U = - -or  - -  ( 2 3 )  
2p 

u = v - b  ( 2 4 )  

In the literature concerning the diffusion theory, the velocity b(x, t) is called 
the mean velocity, while the velocity b,(x,  t) is not considered at all. In the 
mixture theory velocities analogous to v(x, t) and u(x, t) are discussed. They 
are called peculiar and diffusion velocities, respectively (Truesdell, 1969). 
In the literature referring to the stochastic quantization theory (e.g., Nelson, 
1967), not the vector u(x, t) is regarded but -u(x ,  t), which is called the 

In this case 

., 2Vp(x, t) 
b , (x ,  t )=b (x ,  t ) - c r  - - 7 -  : (20) 

p(x, t) 

We have for the trajectory of the Ito equation 

D+x(t) = b(x(t), t) 
(21) 

o_x(t) = b , ( x ( t ) ,  t) 

The operators D+ and D_ represent the future and past of the diffusion 
Markov process, respectively. Particularly, at every instant of  time t there 
exist two mean velocities of  the wandering particle: (i) velocity b ,  with 
which the particle arrives at the point x; (ii) velocity b with which the 
particle starts from the point x. 

We introduce the notation 

v(x, t) = [b,(x, t) + b(x, 0 ] /2  
(22) 

u(x, t )=  [b,(x, t ) -  b(x, t)]/2 
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osmotic velocity. In our paper we use the terminology taken from the mixture 
theory. 

One can relate to the stochastic Ito equation (12) an operator of the 
mean second derivative (Nelson, 1966; Nelson, 1967; Ghirardi et al., 1978) 

A x ( t )  =�89 D_O+)(x(t)) (25) 

This operator is invariant with respect to the symmetry operation t--> - t .  It 
follows from equations (19), (22), and (25) that along the trajectory of the 
Ito equation 

Ax(t) = a(x(t), t) (26) 

where 

a = o ,v+ (v.  V ) v -  (u .  V)u +�89 2 au  (27) 

We call the field a(x, t), x e R 3, t >-- 0 ,  the peculiar acceleration field of the 
diffusion Markov process. 

3. MACROSCOPIC INTERPRETATION OF THE 
FOKKER-PLANCK EQUATION 

It is assumed in the classical formulation of the diffusion theory that 
the mean velocity b(x, t) is defined by the force F(x, t) acting on the diffusing 
particle, according to the Stokes relation (1). Let us consider the case when 

F = F(x) = -V Uo(x) (28) 

It follows from the Fokker-Planck equation (16) that a stationary probability 
distribution p = p(x) such that 

lim p(x) = 0 (29) 
ixn~o~ 

is of the form (Haken, 1978) 

p(x) = C exp[-2 U0(x)/~cr 2] (30) 

For the distribution p(x) there should be the Boltzmann distribution, i.e., 
in order to describe a thermodynamical equilibrium state in the external 
field with the potential Uo(x) and at the absolute temperature T, it should 
be 

2/~o "2= 1/kT (31) 

or, equivalently, 

cre = 2D (32) 
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where 
D = k T / ~  (33) 

and k is the Boltzmann constant. Equation (33) is called the Einstein 
relation. It connects the self-diffusion coefficient D with the mobility of a 
diffusing particle 1/~'. The diffusion coefficient of the form (33) can be also 
used as the chemical diffusion coefficient in ideal solutions (Smirnov, 1982). 
Our generalization consists in assuming that the relation (32) between the 
variance parameter o -2 and the diffusion coefficient D is valid for an arbitrary 
diffusion process, which can be regarded as the random walk of  a particle 
described by the Ito equation (12). In particular we use the relation (32) 
also in the case when the Stokes relation (1) does not hold any more. 

Equations (11) and (32) allow us to write down the Fokker-Planck 
equation (16) in the form 

O,n = D An - d i v ( n b ) + f l ( t ) n  (34) 

where fl(t) ,  t->0, is the rate of  the change of the total number of  the 
diffusing particles 

/3 (0  = 1V( t ) /  N (  t) (35) 

The function 13 describes, e.g., in the case of a chemical diffusion in..an 
infinite body, the change of a number of  diffusing particles caused by the 
increase or decay of gas inclusions by gas diffusion in metals. 

Equation (34) is the diffusion equation with sources for isotropic bodies 
with respect to the diffusion phenomenon in the case of crystal bodies-- for  
crystals with cubic lattices. The influence of  the external field on the diffusion 
process is described by the function b = b(x, t). The coefficient D is under- 
stood as a certain phenomenological coefficient. Its particular form for every 
type of diffusion process can be determined from model microstructural 
considerations or from the experiment. If  we consider a model in which 
diffusion is caused by thermofluctuations of  interstitial atoms and a jump 
from one position into another follows when the energetic barrier is over- 
come, the diffusion coefficient D can be determined by the empirical 
Arrhenius formula 

D = D ( T )  = Do e x p ( -  E a / k T )  (36) 

where the coefficients Do and Ea do not depend on the temperature T. In 
the chemical diffusion with the interstitial mechanism in th.e binary alloys 
with a cubic lattice and with a small concentration of  interstitial atoms 
(process of  the type 2.3) one can neglect interactions of diffusing particles 
and then (Smirnov, 1982) 

Do = Aoa2/ zo (37) 
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Here a is a constant of a cubic lattice, A0 is a coefficient depending on the 
geometrical properties of the interstitial distribution, and To is a constant 
with a dimension of time and of a value of the frequency vibrations of 
atoms in the interstitial positions, i.e., 10 -13 sec. One can take approximately 
Do = 10 _2+ 10 ~ cm2/sec. Ea is the activation energy of the diffusion process 
defined as the elastic energy of a matrix necessary to expand the atoms of 
a crystal lattice by the interstitial atoms at zero absolute temperature. For 
the majority of metals Ea/kTm = 17+ 19, where Tm is the melting tem- 
perature (Bockstein, 1984). 

Recapitulating, if the diffusion coefficient can be determined by the 
Einstein relation (33) the requirement of the Fokker-Planck equation (16) 
with the conditions (28) and (29) to define the Boltzmann probability 
distribution is equivalent to the identification of the Fokker-Planck and 
diffusion equations. In our paper we hold the requirement of equivalence 
of the Fokker-Planck equation (16) and the diffusion equation (34) with 
~r 2 defined by (32) but with D not of the form (33). This means that in a 
stationary case the Fokker-Planck equation defines the non-Boltzmann 
(nonequilibrium) probability distributions p(x) of the form (30) and (32) 
when the Stokes relation is valid. 

4. D I F F U S I O N  A S  THE NELSON-BROWN MOVEMENT 

According to statements in the previous section let us consider the 
diffusion process which is described by the evolution equation of the mass 
density of the form [cf. equation (34)] 

O,p = D A p  - div(pb) + [3 ( t)p (38) 

We denote [cf. equations (8) and (35)] 

p(x, t) = ran(x, t) (39) 

where n(x, t) is the volume concentration of point defects with mass 
m, and Mo = M(O) is the total initial mass of the diffusing defects. 

If we take into account that [cf. equations (11) and (39)] 

p(x, t) = p(x, t ) / M ( t )  (40) 

and [cf. equations (20), (22), (23), (24), and (32)] 

u(x, t) = - D V p ( x ,  t ) /p (x ,  t) = - D V  ln[p(x, t)/po] (41) 
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where Po is an arbitrary constant with the dimension of p(x, t), we can 
rewrite equation (38) in the form ~ the continuity equation 

dtp+ div(pv) = 0 (42) 

Let us consider the situation when the Stokes relation (1) is not valid, i.e., 
when the force K(x, t) of the form 2 

K(x, t )= -~ 'b (x ,  t )+F(x ,  t) (43) 

does not vanish identically. The coefficient ff appearing above is a certain 
friction coefficient describing the interaction of  diffusing matter with a body, 
but we do not assume that the Einstein relation (33) obliges. We assume 
that the force K(x, t) is the total force acting on a diffusing particle in the 
presence of  an external field. Imitating the stochastic quantization method 
(Nelson, 1966; Nelson, 1967; Ghirardi et al., 1978; Yasue, 1978; Nishioka, 
1983) we postulate the following relation between the anholonomic field 
of peculiar accelerations a(x, t) [a(x, t) # if(t)] of a diffusing particle with 
the mass m and the field K(x, t) of forces acting on that particle, 

ma(x, t ) =  K(x, t) (44) 

where a(x, t), x ~ R 3, t/> 0, is defined by equations (27) and (32) 

a=0tv+(v. V) v-(u- V)u+DAu (45) 

The dynamical condition defined by equations (43), (44), and (45) is called 
the Nelson relation. 

If we take into account the fact that u is a potential field [equation 
(41)] and make use of  the equations 

Au = V div u - rot rot u, Vu 2 = 2uVu 

the condition (44) can be rewritten in the form of  the following evolution 
equation of  the peculiar velocity vector v(x, t) 

0,v = - ( v -  u ) / r  - V[D div u + (v 2 - u 2 ) / 2 ]  + F /m  (46) 

where r is a constant with a dimension of time and by definition 

.r = m /  ~ (47) 

2The stochastic quantizat ion method deals with one particle only. The particle has a mass  m 
and moves without friction. That  is the reason why F(x, t) is considered as the total force 
(Nelson, 1966; Nelson, 1967; Ghirardi et al., 1978). Other forms of  forces are discussed too 
(Yasue, 1978; Nishioka,  1983). 
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In statistical physics the constant ~- is called the kinetic relaxation time and 
it is shown that if 

r ,  = dt = t - to > 0 (48) 

is the length of the physically infinitely small interval of time which defines 
the scale of  time for observations of the diffusion process, then for 

~'<< % (49) 

the Stokes formula (1) can be accepted and the diffusion process can be 
considered as a quasistatic process, i.e., as a sequence of equilibrium states 
(Klimontovitch, 1982). It follows from equations (46) and (47) that r has 
similar meaning, because the limit ~--> 0 with ~ = const gives 

b = v - u = F / ~  (50) 

which together with equations (33) and (38) means the classical description 
of the diffusion phenomenon. If 

r>- ~, (51) 

the use of the Stokes relation is not justified (Klimontovitch, 1982). In that 
case we propose the description of the diffusion process based on the Nelson 
relation (43)-(45). This means that diffusion is described by the equations 
(40)-(42) and (46) or equivalently by (38) and (46), where the relation (24) 
is assumed and [cf. equations (40) and (41)] 

u(x, t) = - D V p ( x ,  t ) / p ( x ,  t) = - D V  ln[p(x, t)/po] 
(52) 

Po = poMo 

That system of  equations is equivalent to equations (16), (24), (32), (41), 
and (46) and characterizes completely the Markov process (Ghirardi et al., 
1978). The Markov process defined in such a manner is called (Mielnik 
and Tengstrand, 1983) the Nelson-Brown movement of the diffusing par- 
ticle. 

We note that the continuity equation (42) is linear with respect to the 
variables p and j=pv .  This means that if the pairs pi, ji, i =  1,2, are the 
solutions then also the pair p, j given by definition as 

p =pl  +p2, j = p v = p l v l + p 2 v 2  (53) 

is a solution. We want to stress following (Ghirardi et al., 1978) that, on 
the contrary, the dynamical Nelson relation (46) does not have this property. 

It is seen that the Nelson relation is responsible for the fact that the 
description of the Nelson-Brown movement depends on the evolution of 
the mean quantities of that movement. This means, from the point of view 
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of the diffusion process, that the Nelson relation puts certain constraints 
on the microstates of the diffusing matter which counteract the quite chaotic 
movement caused by the absence of interactions of diffusing particles. As 
a physical explanation of the existence of these constraints one can propose, 
for example, the so-called deformational interaction of diffusing particles 
phenomenon, which is observed, e.g, in the diffusion of hydrogen (Maximov 
and Pankratov, 1975) in metals. Those foreign atoms occupy in metals 
interstitial positions and the diffusion process is of the type 2.3. The inter- 
stitials deform a lattice by pushing aside the surrounding matrix atoms. 
They in turn displace the next atoms, and so on. Finally, a long-range 
displacement field appears, which vanishes as r -2. So, even in very small 
concentrations, the diffusing atoms interact through the created displace- 
ment field and can develop a certain ordering in the diffusing atoms distribu- 
tion. The existence of that substructure depends strongly on temperature. 
We come back to the problem of the connection of the Nelson relation with 
the ordering of microstates in the fifth part of the paper. 

5. ANALOGY WITH QUANTUM MECHANICS AND 
DISSIPATIVE STRUCTURES 

Following the lines of the stochastic quanfization method (Nelson, 
1966; Nelson, 1967; Ghirardi, 1978; Yasue, 1978; Nishioka, 1983) we 
consider the Nelson-Brown movement in the case when the peculiar velocity 
v(x, t) and external force F(x, t) are potential fields, i.e., 

v(x, t )=  2DVS(x, t) (54) 

F(x, t ) = - v  U(x, t) (55) 

We know that the field u(x, t) has a similar representation [cf. equation 
(41)] 

where 

u(x, t ) = - 2 D V R ( x ,  t) 

R(x, t )=  ln[p(x, t ) / p o ] / 2  

It follows that equations (42) and (46) take the form 

O,R = - D A S - 2 D V R .  V S  

O,S = D A R  - D[(VS) 2 - (VR) 2] - V / 2 D m  

where 

(56) 

(57) 

(58) 

(59) 

V = U +  2 D m [ R  + S +  C ( t ) ] / T  (60) 
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and C l ( t ) = - C ( t ) / 2 D m  is an integration constant of equation ( 5 4 )  3. 

If  we put 

q,(x, t) = exp(R + iS) (61) 

then equations (58) and (59) read 

ihOtt~ = - h  2 A~b l2rn + Vtp (62) 

where 

V= U +  h[ln[~12+ i ln(~b*/~b)+ C(t)] /2r  (63) 

and h is given by (4). In these new notations equations (54) and (56) take 
the forms 

u(x, t) = -tffV lnl~12)/2m (64) 

v(x, t) = ih[V ln(6*/t~)] /2m (65) 

Equation (62) is a new phenomenological representation of a system 
of equations (42), (41), and (46) and defines with the help of equations 
(64) and (65) fields u(x, t) and v(x, t) of the Nelson-Brown motion describ- 
ing a diffusion process. 

When r ~ ~ then equation (62) takes the form of the Schr/Sdinger-like 
equation 

ihG~ = -~2a~b/2m + U6 (66) 

However, it is not the Schr6dinger equation, because in limits of the validity 
of the Arrhenius formula (36) the parameter h cannot reach the value of 
the reduced Planck constant h = h/2~r. It can be easily shown that the 
temperatures calculated from equation (4) and the Arrhenius formula (36) 
with the assumption h = h for experimental data of Do and Eo for various 
metals (e.g., Bihr et al., 1978; Rein et al., 1978; Maier et al., 1979) are much 
greater than the melting temperatures! 

In what follows we restrict our considerations to 0 <- ~" < co because the 
case ~-= oo is not typical for the diffusion phenomena. 

We note that although equation (62) is not an equation of the quantum 
mechanics, it can still describe certain quantum effects because the probabil- 
ity of a transition of an interstitial to the next site depends on the mass of 
a diffusing particle. This is, for example, possible as a result of influence 
of certain quantum effects and can be included in calculations of the 
diffusion coefficient D (Maximov and Pankratov, 1975; Franklin, 1975). 
Quantum effects are especially considerable at low temperatures, at which 
the Arrhenius formula is not valid and the problem of the value of the 
quantity h appears once more. We leave that problem open, because it is 

3The constant C(t) can be always put equal to zero by a proper choice of S(x, t). 
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out of  the scope of  our paper: our aim is to describe macroscopic and not 
quantum effects. To this end we represent equations (62) and (63) without 
microscopic quantities, i.e., in the forms 

iO,tO = - D A ~  + V /h  (67) 

V/fi  = U/h+[ ln l~12+ i ln(~b*/~O) + C(t ) ] /Zr  (68) 

where fi is interpreted as a certain material constant with a dimension of 
action ( [ f i ]=gcm2sec-~) .  The constant h together with the diffusion 
coefficient D ([D] = cm 2 see -1) and relaxation time r ([~] =sec)  characterize 
the properties of  a body with diffusion. The interpretation of equation (40) 
remains unchanged: it describes the restriction of equation (67) to the case 
of  negligible interactions of  diffusing particles. Thus the function (15) is 
the probabili ty that the diffusing particle is inside the set ~ at the instant 
t. With such an interpretation of equation (67) the random walk of a diffusing 
particle with mass m can be considered as the Nelson-Brown movement  
if the condition 

rn = f i /2D (69) 

is fulfilled. 
The nonlinearity 4 of  the considered diffusion process with respect to 

p and the stochastic character of  its microscopic mechanism suggest that 
equation (67) can be used to describe diffusion in states far from equilibrium 
(Gumifiski, 1983). From this point of  view the stationary solutions of  (67) 
are particularly interesting, i.e., solutions of  the form 

~O(x, t) = qS(x) e x p ( - i F t / h )  (70) 

where F is a constant with a dimension of energy. Namely, the far-from- 
equilibrium stationary mass distributions are characteristic for so-called 
dissipative structures (Belintzev, 1983; Ebeling, 1976). For p(x, t) of  the 
form (40) such stationary solutions are possible if M ( t )  = Mo = const and 

p(x) = ~bZ(x)p0 (71) 

&2(x) = p(x)/po,  Po -- poMo 

I f  we put (70) into (67) and accept that 

C(t )  = 2Ft /h ,  U(x, t ) =  Uo(x) (72) 

we obtain 

DA&--  ~ In O / r + ( 1 / h ) ( U o ( x ) - F ) &  (73) 

4An-thony (1983) has shown that the Schr6dinger and diffusion equations cannot be equivalent 
to each other. This result is valid only for the linear diffusion equation. 
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We note that in a stationary case the peculiar velocity v = 0 [cf. (65)] which 
together with (24) give b = -u .  It follows from equation ( 5 2 ) , / 3 ( t ) -  0, and 
the above considerations that the diffusion equation (38) is fulfilled identi- 
cally for an arbitrary density distribution p(x). This means that equation 
(73) describes those properties of the stationary distributions of diffusing 
matter which follow from the Nelson relation (43)-(45) only. Let us consider 
the case when external forces are absent, i.e., when 

/-1o- F = Eo = const (74) 

If we denote by 

4~(r) = &(rL) exp(E0~'/fi) (75) 

where r =-x~ L, L= (Dr) l/z, the equation (73) can be rewritten in the form 
independent, evidently, of the parameters 

Ar~(r) = 4~(r) In ~(r)  (76) 

The above equation defines stationary distributions of diffusing mass 

p(x) = p~&2(x/L) (77) 

where 

P~ = po exp(-ZEo~-/h) (78) 

to which corresponds the probability distribution 

p(x) =p~c~2(x/L) (79) 

with 

p, = p~/M (80) 

It is seen that although the function ~ ( r ) =  1 for rE R 3 is a solution of 
equation (76), it does not fulfil the condition on probability measure nor- 
malization o n  R 3. For that reason we assume that to the solution ~(r)  -= 1 
corresponds the following mass distribution: 

{0 ~ for x~ f l (p )  
p(x) = f o r x e  RS\~2(p) (81) 

where f ~ ( p ) c  R 3 is a certain region with vol f~(p)<co.  Because uniform 
distribution of mass Mo concentrated in f~(p) is given as 

p, = Mo/ V (82) 

where V = vol O(p)  we have that 

Eo = fi ln(po V) /2z  (83) 
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with P0 --- po/Mo. To the mass distribution (82) corresponds the probability 
distribution 

10/V f o r x 6 O ( p )  (84) 
P~ = f o r x c  R3\O(p) 

We introduce statistical entropy as a measure of indetermination of a 
statistical description of stationary states of a dissipative process and defined 
as follows (Ciesielski, 1971): 

where 

and 

S(p) = fR ~ dS(p(x)) (85) 

as(p(x)) = p o n ( p ( x ) / p o ) a V ( x )  

~7(w)= {okW ln w for w > 0  

for w = 0  

(86) 

(87) 

Let f~ c R 3, 0 < V = vol ~'~ < o0 be a certain region and p(x) be a proba- 
bility distribution on R 3 for which 

~Q(p) = {x c R3: p ( x )  > 0} = ~ (88) 

where p (x )=  p(x)/Mo. It follows that 

a p(x) dV(x)= 1 (89) 

and then (Ciesielski, 197l; Klimontovitch, 1982) 

S(p(x))--- S(p~.) = k In (poV) (90) 

where p~ is the probability given by equation (84). The equality in (90) is 
attainable for sufficiently smooth distributions p(x) only if p(x) =p~. It can 
be shown that for the probability distributions p(x) on R 3 defined by (71) 
with p(x) of the form 

P(x)={ M~176 forf~ x c l ~ x  C R 3\~'~ (91) 

where (b(r) is a solution of equation (76) in f~, Eo of the form (83) and 
when conditions (88) and (89) are fulfilled then the condition Vp(x)S0  
for almost all x c R 3 implies that 

S(p(x)) < S(p,~) (92) 
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The inequality (92) is formulated for one particle of a microstate. Our 
assumption that the interactions of diffusing particles are absent has a 
mathematical picture in the additivity property of the functional S(p):  it 
allows, if one joins the independent systems into one system, to transfer 
the inequality (92) on a whole microstate (Ebeling, 1976). 

Decrement (increment) of the measure of indetermination of a statis- 
tical description is usually interpreted as an increment (decrement) of the 
ordering level of microstates corresponding to the considered measure, e.g., 
the level of S(p~)=  k ln(p0V) in (92). Distribution p, of the form (84) can 
be considered as describing chaotic and space equilibrium distribution of 
diffusing particles in f~ [e.g., Brownian particles (Reif, 1965)]. The non- 
vanishing density gradient which implies the inequality (92) causes the 
appearance of a space ordering at a microlevel. It is a characteristic picture 
for a special case of dissipative structures called Turing dissipative struc- 
tures. The existence of such structures is experimentally confirmed. They 
can appear as a result of perturbations destroying the stability of uniform 
equilibrium of matter distributions and have the lower symmetry than the 
original one (Belintzev, 1983). We have already mentioned the observed 
ordering microstates in stationary states caused by the deformational interac- 
tions of diffusing particles. The inequality (92) allows for precision when 
the Nelson relation can be discussed as a phenomenologically equivalent 
to the considered phenomenon: namely, when it appears in the stationary 
nonequilibrium states. As an example one can give a situation when a 
part of matrix atoms is replaced by foreign atoms and the geometric 
equivalence of interstitia!s is different from their energetic equivalence 
(Smirnov, 1979). 

A complete description of the effects of deformational interaction in 
the context of the Nelson relation needs an extension of our approach to 
the field description of the whole body with diffusion. This is, however, out 
of the scope of our paper and will be discussed elsewhere. 

We want to express that in order to interpret equation (76) as an 
equation describing dissipative structures, we have to introduce a bounded 
region. Otherwise a system cannot be regarded as thermodynamically open 
and the dissipative structures cannot appear (see, e.g., Ebeling, 1976). 

6. INFLUENCE OF RELAXATION TIME ON DIFFUSION 
P R O C E S S  

Let us consider a stationary state of a diffusing matter with an ascribed 
characteristic energy 0 > 0. For example, 0 = k T  when we have to deal with 
an equilibrium state. We have, for certain dimensionless parameters a = 
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a(fi, r, 0 ) > 0  and/3 =/3(m, fi, D ) > 0 ,  

0 -L a~/r ,  

It follows from (47) and (93) that 
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where 

We assume that 

because then 

where 

and 

D = 0/cq3~" (94) 

If  we regard the diffusion process as the Nelson-Brown movement, then 
/3 = 2 and 

D = 0/2a~" (95) 

When the diffusion coefficient D depends on the relaxation time, then 
= o~(~-), and 

D = D(A,)  = k A , / ~  (96) 

A, = O/[2ka( t)] (97) 

lim a ( r )  = o~(0) = 1/2 (98) 
7"--->0 

~'=const 

lim D ( A , )  = D ( A 0 )  = kAo/~ (99)  
"to0 

~=cons t  

Ao= 0/k (100) 

D(A0) = 0/~" (101) 

For equilibrium states, i.e., when 0 =  kT, equation (101) reproduces 
the Einstein relation (33) and when 

0 = ~Do e x p ( - E a / k T )  (102) 

D(Ao) is in line with the Arrhenius formula (36). It is easy to see that if 
we put D = D(A,)  for 0 < r < co then the considerations from Sections 4 
and 5 of  our paper remain without change. In a limit when ~ + 0  and 

= const, the classical diffusion equation has the form (38) with D = D(Ao) 

=/3mD (93) 
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and b defined by (1). The limit r--> oo needs the additional assumption that 
there exists a limit of D ( M )  

Doo= lim D ( A , ) > 0  (103) 
m ~ c o n s t  

We obtain in this case the equation (66) but with h = h~ = 2mDoo. Making 
use of equations (47), (69), and (96) we can rewrite equation (73) in the 
following form: 

zD(A~)A4~=q~lnO+(Uo-F)ch/(2kA~), r > O  (104) 

It is seen from (99) that 

l im  ~-D(A~) = 0 ( 1 0 5 )  
"r --~ 0 

f f = c o n s t  

and the corresponding asymptotic solution of equation (104) reads 

6o(X) = exp{-[  Uo(x) - F]/2 kAo} (106) 

This solution defines the probability distribution qo(x) of  a form [cf. 
equation (71)] 

qo(x) = pod)2o(x) = C e x p [ -  Uo(x)/kAo] 
(107) 

C = Po exp(F/kAo)  

It follows from the probabilistic measure normalization condition that 
it should be 

F = kAo In Z 
(108) f, 

= Po J [R~ exp [ -  Uo(x)/kAo] dV(x) Z 

or, equivalently, 

F = E - AoS(qo) (109) 

where E is a mean energy 

E = ~ Uo(x)qo(x) dV(x) ( l l0 )  
J R 3 

Here S(qo) is a statistical entropy (85). 
I f  0 = kT, then Ao = T, qo(x) is the Boltzmann distribution and the 

statistical entropy S(qo) can be identified with the thermodynamic entropy 
(Ebeling, 1976). In this case the constant F can be recognized as a free 
energy on one particle of a microstate in a thermodynamical  equilibrium. 



552 TrzCsowski and Kotowski 

If  0 is given by equation (102) then qo(x) is the same as the probability 
distribution p(x) defined by equations (30), (32), and (36). 

It is seen that in the limit where z ~ 0  and ~'=const, equation (104) 
reproduces the probability distributions discussed in Section 3. 

We mentioned in Section 5 the possibility of describing the Turing 
structures with the help of equation (76). Characteristic dimensions of those 
structures are defined by such macroscopic parameters as diffusion 
coefficients and kinetics times (Belintzev, 1983), that is, in our case the 
characteristic length 

I~ (D~ ' )  ~/2 (111) 

Let us consider a case when a stationary distribution of diffusing matter 
has a certain characteristic dimension l, such that for a certain dimensionless 
parameter A = A(l,  ~', D )  > 0 

D = A l 2 / z  (112) 

We have by definition 

w=l /7 -  ( l l3 )  

K = row2~2 ( l l4 )  

It follows from equations (47), (69), (93), (113), and (114) that 

K = O/4Aa  (115) 

In order to find a value of  the parameter A when 7-~ 0, consider the case 
(49) where the Stokes relation (1) is valid and a model of the dynamics of 
the diffusion process microstates can be based on the Langevin equation 
(Nelson, 1967; Klimontovitch, 1982) 

z~ = - i  + b(z, t) + dW(t)  (116) 

where z is defined by equation (47) and W(t) is a Wiener process. It can 
be shown that for a properly smooth function b(z, t), the solution z = z(7-, t), 
t >-0, of the above equation with the initial conditions 

z(% 0) =Xo, z(~', 0) = Wo (117) 

has a limit with probability 1, 

lim z(z, t ) = x ( t )  (118) 

uniformly on every interval [a, b ] c  [0, oo) and for every w0c R 3. Here x(t)  
is a solution of the stochastic Ito equation (12) with an initial condition 
x(0) = Xo. The result remains the same if the initial velocity Wo is a Gaussian 
random variable with a mean value zero and a variance o '2 /27  ". The interac- 
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tion of diffusing particles with a body is described in equation (116) by a 
friction parameter ~ and variance parameter o "2. Parameter o-2 can be 
calculated from a condition that for 

F = ~b = 0 ( 1 1 9 )  

and for t-->cc the mean kinetic energy of our system is equal to the 
characteristic kinetic energy K given by (114) of a stationary diffusion 
process with the condition (49). The velocity w( t )=  z(7, t) defined by 
equations (116), (117), and (119) is a random velocity and (Nelson, 1967) 

E[w(t)] = Wo exp ( -  t~ 7) 
(120) 

E[w'(t) |  = o-2[(1 - exp ( -  t~ 7)] I /27  

where w ' ( t )=  w ( t ) -  E[w(t)]. It follows that 

lira E[w(t)] = 0 
t o o ~  

(121) 
lim E[ m IIw(t)t]2/2] = 3 ~o-a/4 = K 
t o o : )  

for 7<< ~-,. In this Case [cf. equations (32), (98), (99), (115), and (121)] 

o-2/2 = D(A,)  ~ D(Ao) for 7<< 7, (122) 

and 

which give 

K ~ O/2A for 7<< 7, (123) 

lira A[l, r, D(A,)]  = 1/3 (124) 
, t o 0  

7~ = c o n s t  

It follows from equations (105), (112), and (124) that the characteristic 
length depends on the relaxation time r and 

lim l(~') = l(0) -- 0 
~ - o 0  

~ = c o n s t  

(125) 
lim 12(7)/ 'r=3D(Ao)=30/~ 
~ ' ~ 0  

~ r  

We see that [cf. equation (111)] I(7)= 0"(~/~). 
Summarizing, the conditions (95)-(99) define such a form of depen- 

dence of the diffusion coefficient on the relaxation time 7 which is an 
extension of the formulas considered in the classical description of the 
diffusion process running by the states close to the thermodynamic equili- 
brium. Consequently, if the relaxation time 7 is not negligible [the inequality 
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(51)] it influences not only the character of  microstates dynamics (Nelson 
instead of Stokes relation) but also the macroscopic properties of a body 
with diffusion [ D =  D(A~)]. That diffusion process makes possible the 
existence of nonequilibrium stationary structures of diffusing matter with 
a certain characteristic dimension l depending on the relaxation time 
according to the relation (125). Thus the diffusion phenomenon described 
above can be characterized by a set of dimensional quantities 

m, l(~-), % h(~-) (126) 

where h(7) = 2rnD(A,).  

7. ON THE METHOD,  ITS RESULTS, AND POSSIBLE 
GENERALIZATION 

The semiheuristic method used in our paper has not of course, from 
the phenomenological point of view, a satisfactory proof  of  efficiency. It 
serves rather to show the place at which we have to escape from the classical 
description of  a diffusion process if we want to represent it as the Nelson- 
Brown movement and to show the possible consequences for a phenomeno- 
logical theory. A key role is played by such a formulation of the Nelson 
relation which can be treated as a generalization of the Stokes relation. The 
fact that the Nelson relation is based on the notion of the peculiar acceler- 
ation of a diffusing particle allows us to introduce to the phenomenological 
theory a parameter from a microscale: the mass m of a diffusing atom. 
Consequently, the variable describing the process was changed: instead of  
the mass density p(x) we have used the density of the probability of 
localization of a diffusing atom p(x). Restriction to the case when 

p(x, t)-=p(x, t ) /g( t )  

allowed us to transfer many relations and interpretations to the area out of 
the limits of  the classical description of diffusion and offered facilities to 
formulate interpretation rules for equation (67) [cf. (92)]. 

In reality, the probability density p(x, t) was regarded as a kind of a 
hidden, or as it is called in the continuum theory, internal variable, i.e., a 
variable describing the internal state of  a material (e.g., Sidoroff, 1975). 
From this point of  view equation (67) introduces such a new complex 
internal variable ~b(x, t) that 

p(x, t)/po = ~b(x, t)~b*(x, t) 

The discussion given in Section 5 showed that this internal variable was 
connected with the existence of stationary states of diffusing matter far from 
the thermodynamically equilibrium states. The case of  equation (76) dis- 
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cussed in a b o u n d e d  region suggests that  the Ne l son -Brown  movement  can 
be connected with the theory of  dissipative structures. Such an approach  
requires the generalization o f  the theory of  the Ne l son -Brown  movement  
because many  new problems appear  as, for example,  the time of  staying of  
the Markovian  particle in that region and its behavior  at the boundary .  It 
would be crucial, f rom the point  o f  view of  the dissipative structures theory,  
to extend the presented theory to a case o f  two (or more) chemically reacting 
and diffusing components  o f  a body  (e.g, Belintzev, 1983), It seems to be 
possible if one relates our  interpretation o f  the stochastic quantizat ion 
method  to the propos i t ion  o f  describing in its frames the mixed quan tum 
states, as it is discussed in the paper of  Ghirardi  et al. (1978). 
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